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2 INTRODUCTION 

This document discusses the mathematics and formulas used in the Solvenswiss methodology. In the following, 

a pension fund is analyzed in view of its liabilities. The aim of the Solvenswiss is to extend the technical analy-

sis, usually performed within the pension fund’s annual report, to a risk analysis. This latter analysis aims to 

incorporate, as much as possible, the market risk and the cash flows risk, which are due to uncertainty about 

market and liability conditions in the future. 

Section 3 introduces briefly the technical analysis. Section 4 discusses at length the risk analysis and is the main 

contribution of this document. Section 5 presents a computation of the fluctuation reserves objective. 

3 TECHNICAL ANALYSIS 

3.1 LIABILITIES AND TECHNICAL LIABILITIES 

The liabilities consist in the pension fund’s commitment to its members of paying them every year t  a given 

cash flow 
tC . The cash flow 

tC  is the members’ claim at year t  on the assets of the pension fund. As the active 

members are contributing to the pension fund while the passive members are receiving their pensions, the cash 

flow may be negative, if the contributions exceed the pensions, or positive, if the pensions exceed the contribu-

tions. A particular year is a date in the future and we consider , ,t T… , the T  future years. In general, for a 

closed pension fund, T is of the order of 80 to 100 years. As the cash flow 
tC  is a forecast of a future cost, it is 

uncertain. In what follows 
tC  is the expected value of the cash flow. The technical liabilities are the sum of the 

discounted cash flows defined as: 

 
1 (1 )

T
t

t
t

C
L

r=

= ⋅
+∑  (3.1) 

The discount rate r  is referred to as the technical rate. The interpretation of the technical rate is the return that 

the pension fund offers to its members on their capital. Indeed, if 
tC  is promised today in t  years, then the value 

the pension fund should put aside to cover this commitment is (1 )ttC r+ , assuming that its portfolio has a 

yearly return of r  every year. Therefore, (1 )ttC r+  is the value that the pension fund should ask to its mem-

bers today, committing itself to pay it back in t  years plus a yearly interest of r . 

The fortune F  is the market value of the assets of the pension fund. The funding ratio ρ  is defined as the ratio 

between the fortune F  of the pension fund and its liabilities L : 

 .F Lρ =  (3.2) 

The funding ratio is a measure of the health of the pension fund. 

3.2 EXAMPLE 

We consider a very simple hypothetic pension fund whose liabilities end in five years. Let the technical rate be 

3%r = . Then the technical liabilities can be computed according to the following table. 

TABLE 3.1 

t  r  tC  ( )1

t

t

C

r+
 

( )1 1

T
t

t
t

C

r= +
∑  

1 3% 100 97.09 97.09 

2 3% 80 75.41 172.50 

3 3% 60 54.91 227.40 

4 3% 40 35.54 262.94 

5 3% 20 17.25 280.20 

Therefore the technical liabilities equal 280.20. If the fortune is 285F =  then the funding ratio is 

285 280.2 101.7%ρ = = . 
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The number of funded years N  is the latest year at which the fortune exceeds the sum of the discounted cash 

flows: 

 
( )1

sup 0 :
1

t
h

h
h

C
N t T F

r=

  = ≤ ≤ ≤ ⋅ 
+  

∑  (3.3) 

When the funding ratio is below 100% then N  is the number of years before the fund’s bankruptcy. If the 

funding ratio is above 100%, then N  equalsT . 

3.3 EXAMPLE 

In the previous example, as the funding ratio is larger than 100% then 5N = . If 250F =  then the funding ratio 

is 89.2% and the number of funded years equals 3. 

3.4 MEASURE OF SENSITIVITIES 

The (modified) duration D  measures the first order sensitivity of the liabilities to the technical rate. It is defined 

as the derivative of the logarithm of the liabilities: 

 
ln 1

.
L L

D
r L r

∂ ∂
= = −

∂ ∂
 (3.4) 

The duration is estimated by the effective duration 
eff

D  based on three technical rates: 
0r r r− +< < : 

 
0

1
.

eff

L L
D

L r r

+ −

+ −

−
= −

−
 (3.5) 

The convexity C  is the sensitivity of the duration to the technical rate. It is a measure of second order sensitivity 

of the liabilities to the technical rate: 

 
2

2

1
.

L
C

L r

∂
=

∂
 (3.6) 

The convexity 
eff

C  is estimated by the numerical derivative: 

 0

2

0

21
.

eff

2

L L L
C

L r r

+ −

+ −

+ −
=

− 
 
 

 (3.7) 

The duration and the convexity describe the dependence of the liabilities to the technical rate. A large depen-

dence implies a higher risk on the liabilities. Indeed, in this case, any deviation of the portfolio return from the 

technical rate implies a miscalculation of the liabilities. 

3.5 EXAMPLE 

With a technical rate 0r  at 3%, 0L  is equal to 280.20. Set r+ at 4% and r−  at 2%, then L+ is equal to 274.09 and 

L− is equal to 286.54. The estimate of the modified duration is therefore 

 
1 274.09 286.54

2.22,
eff 280.20 0.04 0.02

D
− −

= =
−

  

while the convexity estimate is 

 
2

1 274.09 286.54 2 280.20
8.53.

eff 280.20 0.04 0.02

2

C
+ − ×

= =
− 

 
 
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3.6 THE EQUILIBRIUM RATE 

Using the duration and the convexity, the technical liabilities can be approximated to the second order: 

 ( ) ( )21
0 0 0 0 0 02

.L L D r r C L r r≈ − − + −  (3.8) 

This approximation enables us to obtain an estimate of the rate 
*r  such that *L F= , in other words such that the 

funding ratio equals 100%: 

 

2

0 0 0 0 0*

0

0

2 2
.

D D C C F L
r r

C

− + − +
= −  (3.9) 

This rate is such that the sum of all discounted cash flows equals the fortune. It is therefore an equilibrium rate 

which may be interpreted as an indicator of health for the pension fund. Indeed, a pension fund with a low 

equilibrium rate does not need to achieve a high portfolio return years after years to cover its liabilities. Thus, it 

is an interesting alternative to the funding ratio which depends on the technical rate being itself a rather arbitrary 

number. 

3.7 EXAMPLE 

Following the previous example, if the fortune is equal to 285 then the equilibrium rate is 2.24%: 

 

2

* 2.22 2.22 2 8.53 2 8.53 285 280.20
0.03 2.24%.

8.53
r

− + − × + × ×
= − =  

If the fortune is equal to 270, then the equilibrium rate is 4.69%: 

 

2

* 2.22 2.22 2 8.53 2 8.53 270 280.20
0.03 4.69%.

8.53
r

− + − × + × ×
= − =  

4 RISK ANALYSIS 

4.1 STOCHASTIC LIABILITIES 

The main object of the risk analysis is the liability function 

 
( )1

1

( , ) ,
1

T
t

t
t

ii

C
L R C

R=
=

=
+

∑
∏

 (4.1) 

where ( )1, , nR R R ′= … is the vector of future portfolio returns (at time 1, ,t T= … ) and 1( , , )TC C C ′= …

 
is the 

vector of the future cash flows. If the future portfolio returns equal R  and if the future cash flows equal C , then 

L  is the value that should be invested in the portfolio to cover, years after years, the liabilities of the pension 

fund. Naturally R and C  are not known, thus L  is not known neither. In other words, the estimation of the 

liabilities carries with it two source of risk: 

1. the market risk due to uncertainty on R ; and 

2. the liability risk due to uncertainty on L . 

Although unknown, some knowledge about what R  and C  could be gained from past observations and a 

probabilistic study. 

The difference between the liabilities issued from the technical analysis and the liabilities issued from the risk 

analysis can be reduced to the risk on returns: if the future portfolio returns are for sure all equal to the technical 

rate, then these two functions are themselves equal. Obviously, the technical analysis ignores the risk relating to 

poor forecasting of future returns and future cash flows. 

  



Solvenswiss, Technical Document, Fundo SA, Marc-Olivier Boldi, 2011 

 

5 

 

4.2 EXAMPLE 

The two tables below exhibit two scenarios for future cash flows and returns. In the first case, the fortune needed 

today to cover the cash flows over the whole period equals 283.05. In the second case, it equals 293.56. 

TABLE 4.1 

t  tR  tC  ( )
1
1

t

ii
R

=
+∏

 ( )
1

1

t

t

ii

C

R
=

+∏
 

( )1
1

1

t
j

j
j

ii

C

R=
=

+
∑

∏
 

1 5.00% 100 1.05 95.24 95.24 

2 -2.00% 80 1.03 77.75 172.98 

3 10.00% 60 1.13 53.01 225.99 

4 -8.00% 40 1.04 38.41 264.40 

5 3.00% 20 1.07 18.65 283.05 

TABLE 4.2 

t  tR  tC  ( )
1
1

t

ii
R

=
+∏

 ( )
1

1

t

t

ii

C

R
=

+∏
 

( )1
1

1

t
j

j
j

ii

C

R=
=

+
∑

∏
 

1 7.00% 102 1.07 95.33 95.33 

2 -7.00% 75 1.00 75.37 170.70 

3 4.00% 55 1.03 53.15 223.84 

4 -1.00% 43 1.02 41.97 265.81 

5 2.00% 29 1.05 27.75 293.56 

Therefore, it is not because the future returns and cash flows are unknown that nothing can be said about the 

liabilities. Indeed, from past observations, one can give information (best estimate from current knowledge) 

about what L  could be by computing the probabilistic distribution of L . In the following, some characteristics 

of this distribution enabling to compute risk measures on the liabilities are displayed. 

4.3 THE EXPECTED VALUE OF L  

The second order Taylor expansion is used to describe the sensitivity of the liabilities to the portfolio returns and 

to the cash flows: 

 
2

( , ) ( , ) ( , ) ( , )

1
( , ) ( , )( , )

2

R C R C R C

R C R C R C

L R C L L R C

R C L R C

µ µ µ µ µ µ

µ µ µ µ µ µ

′ ′ ′ ′ ′ ′≈ +∇ − −

′ ′ ′ ′ ′ ′ ′ ′ ′+ − − ∇ − −
 (4.2) 

with ( )R E Rµ =  and ( )C E Cµ = , being the expected values of the returns and the cash flows. Here ∇ and 2∇  

are the derivative operators. Computing the expected value of this approximation
2
, one obtains: 

 [ ] 21
( , ) ( , ) ( , ) ( , )( , )

2
R C R C R C R CE L R C L E R C L R Cµ µ µ µ µ µ µ µ′ ′ ′ ′ ′ ′ ′ ′ ′ ≈ + − − ∇ − −   (4.3) 

Since the rightmost term from the right-hand side of the equation is a scalar, it is equal to its trace. The fact that 

the trace is linear implies that it permutes with the expectation operator. Furthermore, as the trace is cyclic
3
, one 

obtains: 

                                                           

2 Using a first order approximation would end up to considering the Jensen inequality as an equality. 

3 Tr( ) Tr( )ABC CAB=  
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{ }
{ }
{ }

2

2

2

2

( , ) ( , )( , )

Tr ( , ) ( , )( , )

Tr ( , ) ( , )( , )

Tr ( , ) ( , ) ( , )

Tr (

R C R C R C

R C R C R C

R C R C R C

R C R C R C

E R C L R C

E R C L R C

E R C L R C

E R C R C L

E R

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

′ ′ ′ ′ ′ ′ ′ ′ ′ − − ∇ − − 

′ ′ ′ ′ ′ ′ ′ ′ ′ = − − ∇ − − 

′ ′ ′ ′ ′ ′ ′ ′ ′ = − − ∇ − − 

′ ′ ′ ′ ′ ′ ′ ′ ′ = − − − − ∇ 

′= { }
{ }

2

2

, ) ( , ) ( , )

Tr ( , )

R C R C R C

R C

C R C L

L

µ µ µ µ µ µ

µ µ

′ ′ ′ ′ ′ ′ ′ ′ − − − − ∇ 

= ∑∇

 (4.4) 

where 

 
, ,

,

, ,

R R R C

C R C C

∑ ∑ 
 ∑ =
 ∑ ∑
 

 

and corresponds to the variance matrix with elements corresponding to cov( , )t tR R ′ , cov( , )t tC C ′ and 

cov( , )t tR C ′ . Finally, 

 ( ) { }21

2
, ( , ) Tr ( , ) .R C R CE L R C L Lµ µ µ µ≈ + Σ∇    (4.5) 

In other words, the expected value of the liabilities is approximated by the liabilities evaluated at the expected 

returns and the expected cash flows, plus a corrective term implying the covariance matrix of the risk factors 

(market indices and cash flows). In a next section, this expression will be simplified further. 

4.4 VARIANCE MATRIX OF L 

By using the first order Taylor expansion, 

 ( ), ( , ) ( , ) ( , ) .R C R C R CL R C L L R Cµ µ µ µ µ µ′ ′ ′ ′ ′ ′≈ +∇ − −  (4.6) 

The variance is therefore approximated
4
 by 

 
( ){ }Var , ( , ) Var( , ) ( , )

( , ) ( , ).

R C R C

R C R C

L R C L R C L

L L

µ µ µ µ

µ µ µ µ

′ ′ ′≈ ∇ ∇

′= ∇ Σ∇
 (4.7) 

The variance of the liabilities is therefore approximated by a quadratic product implying the covariance matrix 

of the risk factors. 

4.5 HYPOTHESES ABOUT VARIANCE AND CORRELATION MATRICES 

In what follows, the variance matrix Σ  is assumed to be diagonal. This implies that 

1. there is no correlation between the portfolio returns and the cash flows; 

2. there is no correlation between the portfolio returns at time t  and at time t′ ; 
3. there is no correlation between the cash flows at time t  and at time t′ . 

Hypotheses 1 and 3 are the weakest. Hypothesis 2 is more debatable. It may be justified by the fact that one year 

is a long period. An important point is that one should not confound this hypothesis and the non-stationarity 

hypothesis. In this later case, the expected value and the variance vary in time and, by simulation, already 

integrate autoregression and heteroskedastic effects. 

The fact that Σ  is diagonal implies some simplifications in the computations of the expected value and the 

variance. For the expected value, one can write: 

                                                           
4
 If the second order Taylor expansion was used, then third and forth moments of the distributions of R  and C  should be used. 



Solvenswiss, Technical Document, Fundo SA, Marc-Olivier Boldi, 2011 

 

7 

 

 { } { } { }
2 2

2 2 2 ( ) ( )

2 2
1 1

Tr Tr Tr ,
T T

t t

R L C C R C

t tt t

L L
L L L

R C= =

∂ ∂
Σ∇ = Σ ∇ + Σ ∇ = ∑ + ∑

∂ ∂∑ ∑  (4.8) 

where ( ) 2 ( )t

R tRσ∑ =  and ( ) 2 ( )t

R tCσ∑ =  are the variances of 
tR  and 

tC , respectively. For the variance, one can 

write: 

 

( ){ }

2 2

( ) ( )

1 1

Var , ( , ) ( , )

.

R C R C

R R R C C C

T T
t t

R C

t tt t

L R C L L

L L L L

L L

R C

µ µ µ µ

= =

′≈ ∇ Σ∇

′ ′= ∇ Σ ∇ + ∇ Σ ∇

   ∂ ∂
= ∑ + ∑   

∂ ∂   
∑ ∑

 (4.9) 

4.6 COMPUTATION OF THE DERIVATIVES 

In order to apply the Taylor expansion, the derivatives of the liabilities with respect to the risk factors have to be 

computed. The first derivative with respect to the returns is 

 
( ) ( ) ( )

1 1

1
.

11 1

T T
t t

t t
t j t jj j ji ii i

C CL

R R RR R= =
= =

∂ ∂
= = −

∂ ∂ ++ +
∑ ∑

∏ ∏
 (4.10) 

The second derivative is 

 

( ) ( )

2

2 2

1

2
.

11

T
t

t
t jj ij i

CL

R RR =
=

∂
= −

∂ ++
∑

∏
 (4.11) 

The derivative with respect to the cash flows are 

 
( ) ( )1

1 1
1 1

T
t t

t j
tj j i ii i

C CL

C C R R=
= =

∂ ∂
= =

∂ ∂ + +
∑

∏ ∏
 (4.12) 

and 

 
2

2
0.

j

L

C

∂
=

∂
 (4.13) 

4.7 EXAMPLE 

The table contains the hypotheses on moments of cash flows and portfolio returns. 

TABLE 4.3 

t  ( )tCµ  ( )tCσ
 

( )tRµ
 

( )tRσ  

1 100 5 3.0% 4.0% 

2 80 4 5.0% 6.0% 

3 60 3 5.5% 7.0% 

4 40 2 5.5% 7.0% 

5 20 1 5.5% 7.0% 

The liabilities evaluated at the expected value is 

 ( ) 100 80 20
, 272.62.

1.03 1.03 1.05 1.03 1.055
R CL µ µ = + + =

× × ×
…

…  

The liabilities are computed in the following table. 
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TABLE 4.4 

t  ( )
1

1
t

jj
R

=
+∏  ( )

1
1

t

t

jj

C

R
=

+∏  
t

L

R

∂

∂  

2

2

t

L

R

∂

∂
 

t

L

C

∂

∂
 

2

2

t

L

C

∂

∂
 

1 1.03 97.09 –264.68 513.95 0.97 0.00 

2 1.08 73.97 –167.18 318.43 0.92 0.00 

3 1.14 52.59 –96.27 182.50 0.88 0.00 

4 1.20 33.23 –46.43 88.01 0.83 0.00 

5 1.27 15.75 –14.93 28.30 0.79 0.00 

These derivatives are weighted by the variances of each risk factor. 

TABLE 4.5 

t  ( )
2

2

2t

t

L
R

R
σ

∂

∂
 ( )

2
2

2t

t

L
C

C
σ

∂

∂  ( )
2

2

t

t

L
R

R
σ

 ∂
 
∂   ( )

2

2

t

t

L
C

C
σ

 ∂
 
∂ 

 

1 0.82 0.00 112.09 23.56 

2 1.15 0.00 100.61 13.68 

3 0.89 0.00 45.41 6.91 

4 0.43 0.00 10.56 2.76 

5 0.14 0.00 1.09 0.62 

Therefore 

 { }
2 2

2 ( ) ( )

2 2
1 1

Tr 0.82 0.14 0.00 0.00 3.43.
T T

t t

R C

t tt t

L L
L

R C= =

∂ ∂
Σ∇ = ∑ + ∑ = + + + + + =

∂ ∂∑ ∑ … …   

The expected value of the liabilities is therefore 

 
3.43

( ) 272.62 274.34.
2

E L ≈ + =   

Furthermore 

 Var( ) 112.09 1.09 23.56 0.62 317.31L = + + + + + =… …   

and 

 ( ) 317.31 17.81.Lσ = =   

4.8 CONTRIBUTIONS TO VARIANCE 

The aim is to decompose the variance into contributions coming from 

1. each asset class; 

2. each cash flows; 

3. each time period. 

It was previously established (3.9) that 

 ( ){ }
2 2

( ) ( )

1 1

Var , .
T T

t t

R C

t tt t

L L
L R C

R C= =

   ∂ ∂
≈ ∑ + ∑   

∂ ∂   
∑ ∑  

From this decomposition of the variance into a sum, one can already obtain the contribution to the variance of 

the portfolio return at year t  and of the cash flow at year t . However, one can be more precise than this, and 

obtain the contribution of each asset class. First the portfolio return can be written as 
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 ( ) ,t tR Rα ⋅′=  (4.14) 

where 1( , , )pα α α ′= …  is the vector of allocation of the fortune to each asset class 1, , p… , and 

( )( ) (1) ( ), , p

t t tR R R⋅ ′= …  is the vector of returns of each asset at time t . We can decompose ( )t

R∑  into ( )t

Rα α′Γ , 

where ( )t

RΓ  is the variance matrix of ( )

tR
⋅ . Thus 

 

( ){ }
2 2

( ) ( )

1 1

2 2

( ) ( )

1 1 1

Var ,
T T

t t

R C

t tt t

pT T
t t

j R C

t j tt t

L L
L R C

R C

L L

R C

α α

α α

= =

= = =

   ∂ ∂
′≈ Γ + ∑   

∂ ∂   

   ∂ ∂
= Γ + ∑   

∂ ∂   

∑ ∑

∑∑ ∑
 (4.15) 

Therefore, the contribution to the variance 

1. of the return of the asset at year is 

2

( ) ;t

j R

t

L

R
α α

 ∂
Γ  

∂ 
 

2. of the return of the asset from year to is 
1

0

2

( )
;

t
t

j R

t t t

L

R
α α

=

 ∂
Γ  

∂ 
∑  

3. of the portfolio return at year is 

2

( )

1

;
p

t

j R

j t

L

R
α α

=

 ∂
Γ  

∂ 
∑  and 

4. of the cash flow at year is 

2

( )

1

T
t

C

t t

L

C=

 ∂
∑  

∂ 
∑ . 

Every combination is possible. The relative contributions are obtained by dividing the contribution by the total 

sum. For example, the relative contribution to the return of the asset j  at year t  is 

 ( ){ }
2

( ) Var ,t

j R

t

L
L L C

R
α α

 ∂
Γ  ∂ 

 

4.9 EXAMPLE 

Let’s assume that the portfolio allocation is that of the index Pictet BVG/LPP 25: 

TABLE 4.6 

CHF 

Bonds 

World 

Bonds 

Equities 

Switzerland 

Equities 

World 

Real Estate 

Switzerland 

Real Estate 

World 

Hedge 

Funds 

Private 

Equity 

40.0% 25.0% 7.5% 12.5% 7.5% 2.5% 2.5% 2.5% 

Let’s assume furthermore that the annualized market hypotheses are given in the two following tables: 

TABLE 4.7 

 Annualized Expected Return Annualized Expected Volatility 

CHF Bonds 4.5% 5.4% 

World Bonds 4.5% 5.5% 

Equities Switzerland 8.0% 17.0% 

Equities World 5.0% 18.0% 

Real Estate Switzerland 6.0% 8.0% 

Real Estate World 6.0% 25.0% 

Hedge Funds 6.0% 7.0% 

Private Equity  7.0% 25.0% 
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TABLE 4.8 

Correlation Matrix 
CHF 

Bonds 

World 

Bonds 

Equities 

Switzerland

Equities 

World 

Real Estate 

Switzerland

Real Estate 

World 

Hedge 

Funds 

Private 

Equity 

CHF Bonds 1.00        

World Bonds 0.60 1.00       

Equities Switzerland 0.10 0.05 1.00      

Equities World 0.06 0.07 0.80 1.00     

Real Estate Switzerland 0.34 0.23 0.34 0.28 1.00    

Real Estate World 0.16 0.16 0.64 0.80 0.33 1.00   

Hedge Funds 0.12 0.23 0.37 0.45 0.29 0.40 1.00  

Private Equity  0.03 -0.01 0.60 0.80 0.27 0.68 0.43 1.00 

Furthermore, let’s assume that the cash flows are structured according the following table. 

TABLE 4.9 

t  Expected Value Volatility 

1 100 5 

2 80 4 

3 60 3 

4 40 2 

5 20 1 

Then the covariance matrix ( )t

RΓ  is constant in time and given below. 

TABLE 4.10 

Covariance Matrix 
CHF 

Bonds 

World 

Bonds 

Equities 

Switzerland

Equities 

World 

Real Estate 

Switzerland

Real Estate 

World 

Hedge 

Funds 

Private 

Equity 

CHF Bonds 0.0029 0.0018 0.0009 0.0006 0.0015 0.0022 0.0005 0.0004 

World Bonds 0.0018 0.0030 0.0005 0.0007 0.0010 0.0022 0.0009 -0.0001 

Equities Switzerland 0.0009 0.0005 0.0289 0.0245 0.0046 0.0272 0.0044 0.0255 

Equities World 0.0006 0.0007 0.0245 0.0324 0.0040 0.0360 0.0057 0.0360 

Real Estate Switzerland 0.0015 0.0010 0.0046 0.0040 0.0064 0.0066 0.0016 0.0054 

Real Estate World 0.0022 0.0022 0.0272 0.0360 0.0066 0.0625 0.0070 0.0425 

Hedge Funds 0.0005 0.0009 0.0044 0.0057 0.0016 0.0070 0.0049 0.0075 

Private Equity  0.0004 -0.0001 0.0255 0.0360 0.0054 0.0425 0.0075 0.0625 

For example, the covariance between CHF Bonds ( )1j =  and World Bonds ( )2j =  is computed as

1 2 1,2 0.054 0.055 0.6 0.018.σ σ ρ = × × = Cross products between covariances and portfolio allocations are given in 

the table below. 

TABLE 4.11 

j  { }( )t

R j
αΓ  { }( )t

j R j
α αΓ  

CHF Bonds 0.00194 0.00078 

World Bonds 0.00174 0.00044 

Equities Switzerland 0.00749 0.00056 

Equities World 0.00854 0.00107 

Real Estate Switzerland 0.00251 0.00019 

Real Estate World 0.01125 0.00028 

Hedge Funds 0.00205 0.00005 

Private Equity  0.00976 0.00024 
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The derivatives are then given in the following table. 

TABLE 4.12 

t  ( )tE C  ( )tE R
 ( )

1
1

t

t

jj

C

R
=

+∏  
t

L

R

∂
∂

 t

L

C

∂
∂

 

1 100 5.08% 95.17 -254.84 0.95 

2 80 5.08% 72.46 -164.27 0.91 

3 60 5.08% 51.72 -95.31 0.86 

4 40 5.08% 32.81 -46.09 0.82 

5 20 5.08% 15.61 -14.86 0.78 

Therefore, the contributions to the variance are 

TABLE 4.13 

/j t  1 2 3 4 5  

CHF Bonds 50.38 20.93 7.05 1.65 0.17 80.18 

World Bonds 28.26 11.74 3.95 0.92 0.10 44.97 

Equities Switzerland 36.46 15.15 5.10 1.19 0.12 58.03 

Equities World 69.30 28.80 9.69 2.27 0.24 110.29 

Real Estate Switzerland 12.24 5.08 1.71 0.40 0.04 19.47 

Real Estate World 18.26 7.59 2.55 0.60 0.06 29.07 

Hedge Funds 3.33 1.38 0.47 0.11 0.01 5.30 

Private Equity  15.84 6.58 2.22 0.52 0.05 25.22 

Cash Flows 22.64 13.13 6.69 2.69 0.61 45.76 

 256.72 110.38 39.43 10.35 1.41 418.28 

The total variance amounts to Var( ) 50.38 0.61 418.28L = + + =…  whereas the standard deviation amounts to

( ) 418.28 20.45Lσ = = . Finally, the relative contributions are given in the following table. 

TABLE 4.14 

/j t  1 2 3 4 5  

CHF Bonds 12.04% 5.00% 1.68% 0.39% 0.04% 19.17% 

World Bonds 6.76% 2.81% 0.94% 0.22% 0.02% 10.75% 

Equities Switzerland 8.72% 3.62% 1.22% 0.29% 0.03% 13.87% 

Equities World 16.57% 6.88% 2.32% 0.54% 0.06% 26.37% 

Real Estate Switzerland 2.93% 1.22% 0.41% 0.10% 0.01% 4.66% 

Real Estate World 4.37% 1.81% 0.61% 0.14% 0.01% 6.95% 

Hedge Funds 0.80% 0.33% 0.11% 0.03% 0.00% 1.27% 

Private Equity  3.79% 1.57% 0.53% 0.12% 0.01% 6.03% 

Cash Flows 5.41% 3.14% 1.60% 0.64% 0.15% 10.94% 

 61.37% 26.39% 9.43% 2.47% 0.34% 100.00% 

Therefore, the contributions to the variance are obtained by summing the terms in the previous table. 

For examples, the contribution 

1. of the return of the Swiss bonds at year 1 is 12.04%; 

2. of the return of the Swiss bonds from year 1 to 3 is 12.04% 5.00% 1.68% 18.73%+ + = ; 

3. of the portfolio return at year 1 is 12.04% 3.79% 55.96%+ + =… ; 

4. of the cash flow at year 4 is 0.64%; 
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5. of the year 3 is 1.68% 1.60% 9.43%+ + =… . 

4.10 THE DISTRIBUTION OF L(R,C) 

In the following, we assume that ( , )L R C  is distributed according to a log-normal distribution, then the VaR and 

expected shortfall can be computed accordingly. Recall that if L  is log-normally distributed then ln L is normal-

ly distributed with expected value µ  and variance 2σ . Thus, the expected value and the variance of L are 

respectively 
2

2( )E L eµ σ+= and 
2 2

2Var( ) ( 1)L e eσ µ σ+= − . 

Furthermore, the VaR at level α  and the expected shortfall equal respectively 

 
1
( )VaR ( )L eµ σ α

α

−+ Φ=  (4.16) 

and 

 ( ) ( )( )21 2 1
ES ( ) 1 .L e

µ σ
α α α α− + −= − Φ − Φ  (4.17) 

 

The risk here is associated with high values of L , in other words ( ){ }VaRP L Lα α> = and 

( )ES ( )L E L L VaR Lα α = ≥  . In order to apply the previous approximations, it suffices to compute the deriva-

tives of ln L . To do so, one can note that for each risk factor x  

 

ln 1L L

x L x

∂ ∂
=

∂ ∂  

and 

 

22 2

2 2

ln 1 1
.

L L L

L L xx x

 ∂ ∂ ∂  = −  ∂∂ ∂    
 

4.11 EXAMPLE 

Using the values computed in a previous example, we have 

TABLE 4.15 

t  
ln

t

L

R

∂
∂  

2

2

ln

t

L

R

∂
∂

 

ln

t

L

C

∂
∂

 

2

2

ln

t

L

C

∂
∂

 

1 –0.97 0.94 0.003561 –0.000013 

2 –0.61 0.79 0.003392 –0.000012 

3 –0.35 0.54 0.003215 –0.000010 

4 –0.17 0.29 0.003047 –0.000009 

5 –0.05 0.10 0.002888 –0.000008 

TABLE 4.16 

t  
2

2

2

ln
( )t

t

L
R

R
σ

∂
∂  

2
2

2

ln
( )t

t

L
C

C
σ

∂
∂

 

2

2 ln
( )t

t

L
R

R
σ

 ∂
 

∂ 
 

2

2 ln
( )t

t

L
C

C
σ

 ∂
 

∂ 
 

1 0.00151 –0.00032 0.00151 0.00032 

2 0.00285 –0.00018 0.00135 0.00018 

3 0.00267 –0.00009 0.00061 0.00009 

4 0.00144 –0.00004 0.00014 0.00004 

5 0.00049 –0.00001 0.00001 0.00001 

Furthermore 

 
( )ln , ln 272.62 5.61R CL µ µ= = =
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and 

 { }
2 2

2 ( ) ( )

2 2
1 1

ln ln
Tr ln 0.0083.

T T
t t

R C

t tt t

L L
L

R C= =

∂ ∂
∑∇ = ∑ + ∑ =

∂ ∂∑ ∑  

Finally (ln ) 5.61 0.0083 2 5.62E L = + =  and 2 (ln ) 0.0042Lσ ≈  so that (ln ) 0.065Lσ ≈ . Using the log-normal 

formula, 

 ( ) exp(5.61 0.0043 2) 274.35E L = + =  

and 

 ( )( ) exp(0.0042) 1 exp(5.62 0.0042) 17.94.Lσ = − + =  

The following table computes VaR and ES at levels 90%, 95% and 99.5%. 

TABLE 4.17 

α  1( )α−Φ
 

VaR ES 

90.0% 1.28 297.67 307.14 

95.0% 1.64 304.82 313.35 

99.5% 2.58 323.94 330.76 

4.12 LOGARITHM OR NOT LOGARITHM? 

In the previous paragraphs, the variance of L  was computed under two different methodologies: the first one 

directly, and the second one from the logarithm of L  and the hypothesis of log-normality. The finality of these 

two methodologies is different: 

1. the Taylor expansion of L  leads to the decomposition of its variance into risk factor contributions; 

2. the Taylor expansion of ln L  leads to its expectation and its variance, from which the VaR and the ES for L  

can be computed, under the hypothesis of log-normality. 

The variances obtained under 1 and 2 are different, though hopefully close. The computation of the variance 

under point 1 is more coherent with the hypothesis of log-normality, and should be closer to reality. The compu-

tation under point 2 is a necessity because an additive decomposition of the variance of into risk factor contribu-

tions would lead to a multiplicative decomposition of the variance of L , which would be very difficult to 

interpret. 

4.13 THE DISTRIBUTION OF THE FUNDING RATIO 

The funding ratio is defined as F Lρ = , and, thus, the logarithm of the funding ratio is ln ln lnF Lρ = − . It 

follows that, if L  is distributed according to a log-normal distribution, so is also ρ . Furthermore, the expected 

value of ln ρ  is (ln ) ln (ln )E F E Lρ = −  and its variance (ln ) (ln )Lσ ρ σ= . 

For the VaR and the ES, one must remark that an upside risk for the liabilities corresponds to a downside risk for 

the funding ratio. Therefore, the risk here is associated with low values of ρ , in other words 

( ){ }VaR 1P αρ ρ α≤ = −  and ( ) ( )ES VaREα αρ ρ ρ ρ = ≤  . One can compute 

 
1
(1 )VaR ( ) eµ σ α

α ρ
−+ Φ −=  (4.18) 

and 

 ( ) ( )( )21 2 1
ES ( ) 1 1 .e

µ σ
α ρ α α α− + −= − Φ Φ − −  (4.19) 

4.14 EXAMPLE 

In the previous example we have, approximately, (ln ) 5.61E L =  and (ln ) 0.065Lσ = . Therefore, with a fortune 

fixed at F , we have (ln ) ln 280 (ln ) 0.023E E Lρ = − = and (ln ) 0.065σ ρ = . 
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Using the log-normal formula, we find ( ) 102.5%E ρ =  and ( ) 6.7%σ ρ = . The following table computes VaR 

and ES figures at levels 90%, 95% and 99.5%. 

TABLE 4.18 

α  1(1 )α−Φ −
 

VaR ES 

90.0% -1.28 93.91% 90.95% 

95.0% -1.64 91.47% 89.09% 

99.5% -2.58 85.23% 84.26% 

5 FLUCTUATION RESERVES 

Fluctuation reserves are that part of liabilities designed to absorb future fluctuations of the asset values due 

market uncertainty. They are defined as reserves above technical liabilities. The fluctuation reserves objective, 

FRO, is related to a risk level and corresponds to the excess above technical liabilities of the risk measures 

developed in the risk analysis  

 FRO Risk Lα α= −  (5.1) 

where Riskα  is a risk measure (VaR or ES) at level α  and L  is the technical liabilities. The fluctuation re-

serves objective can also be expressed relatively to the technical liabilities, rFRO 

 
Risk

rFRO .
L

L

α
α

−
=  (5.2) 

 

5.1 EXAMPLE 

Following the previous examples, with technical liabilities at 280.20, for a technical rate at 3%, then the FRO 

and the rFRO are given in the following table. 

TABLE 5.1 

α  VaR FRO to VaR rFRO to VaR ES FRO to ES rFRO to ES 

90.0% 297.34 17.15 6.12% 307.14 26.94 9.61% 

95.0% 303.86 23.67 8.45% 313.35 33.16 11.83% 

99.5% 320.57 40.37 14.41% 330.76 50.57 18.05% 

6 CONCLUSIONS 

In this document, the liabilities are viewed as the amount needed today to meet the commitments of the pension 

fund toward its members. This amount thus depends on the strategy the pension fund applies, and therefore on 

the unknown future portfolio returns as well as the unknown future cash flows. 

Incorporating, the resulting uncertainty is a matter of mathematical modeling. In this document the lognormal 

model is used to: 

1. compute value at risk and expected shortfall of the pension fund liabilities and of the funding ratio; 

2. decompose the risk on the liabilities into various risk factors (market sectors, cash flows and time); and 

3. compute fluctuation reserve objective relative to the technical liabilities. 

The ultimate aim of this document is to explain the formulas used in the Solvenswiss. It does not present the 

justification to the log-normal hypothesis, neither does it discuss the issue of market models (Gaussian or 

GARCH) or the issue relating to the choice of particular market sectors (mapping). These will be the issues for 

further publications. 


